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Introduction:  During impact cratering, a signifi-

cant volume of rock is subjected to extreme defor-
mation conditions. Brittle deformation under these 
conditions, where strain rates can be in excess of 101 
to 102 s-1, is rate-sensitive. Typically, rocks are 
stronger when deformed at high strain-rate conditions, 
e.g. [1], this occurs because fracture propagation has a 
limited velocity; at high loading rates, the weakest 
flaws in a material are not able to cause failure before 
other, increasingly strong flaws are activated. We aim 
to assess the significance of strain-rate sensitive brit-
tle deformation on the cratering process in various 
rock types. Numerical impact simulations, so far, do 
not take strain-rate dependency into account. 

To begin our investigation of rate-dependent rock 
failure in the context of impact cratering, we have 
focussed on the behaviour of common crustal litholo-
gies: gneiss, basalt, granite, and sandstone. Here, we 
have obtained mechanical data at strain rates ranging 
from quasi-static (~10-6 s-1) to dynamic (~103 s-1). In 
addition, we have carried out micro-structural analy-
sis on the products of the mechanical experiments. 

Methods: Mechanical data and samples for micro-
structural analysis were obtained using a triaxial load-
ing frame and a Split-Hopkinson Pressure Bar 
(SHPB). The triaxial loading frame achieves strain 
rates from 10-7 s-1 to 10-4 s-1, while the SHPB achieves 
strain rates from 100 s-1 to 103 s-1. 

To carry out our investigation, we have collected 
samples of gneiss (Maggia, Switzerland), basalt (He-
gau, Germany), granite (Marlsburg, Germany), and 
sandstone (Seeberg, Germany). These samples were 
prepared for mechanical testing by coring 41 mm di-
ameter cylinders. Cylinders for the triaxial loading 
frame were 82 mm in length, while samples for the 
Split-Hopkinson Pressure Bar were typically 41 mm 
in length, some shorter and longer samples were pre-
pared to facilitate varying of strain-rate. 

From the mechanical experiments, the strain-rate 
dependency of strength was calculated and samples 
were generated for microstructural analysis. Microa-
nalysis of the deformed samples includes particle size 
analysis of fragmented material, petrographic charac-
terisation, and white-light interferometry of fracture 
surfaces. 

Results: Preliminary results show dynamic 
strength increases in Maggia Gneiss and Seeberger 
Sandstone at threshold strain rates > 12.8 s-1 and 24.7 
s-1, respectively [2]. Interestingly, no clear dynamic 
strength increase is observed in Hegau Basalt up to 
strain rates of 350 s-1 (Figure 1). 

Microstructural characterization of the resultant 
rock samples show a progression of increasing frag-
mentation with increasing strain-rate (Figures 2 and 
3). In addition, our results demonstrate that the onset 
of pulverization is lithology-dependent and is corre-
lated with the characteristic strain rate for the onset of 
dynamic strengthening. 

Discussion: Here, we present parameters that de-
scribe dynamic strength during compressive failure in 
a variety of common rocks. Furthermore, failure un-
der dynamic compression results in progressive frag-
mentation that can also be parameterized. Our results 
therefore allow for dynamic strength, and compres-
sive fragmentation models to be implemented in 
shock physics codes. 

In addition to the results described, we aim to 
characterize rock failure and fragmentation in dynam-
ic tensile conditions, and to expand our compressive 
results to the highly dynamic regime (~106 s-1)  using 
flyer plate tests. 
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Figure 1: Strain-rate dependent strength of basalt, gneiss, 
and sandstone (sandstone results of [1] shown in pale yel-
low). Mechanical data derived from triaxial rock press and 
Split-Hopkinson Pressure Bar (SHPB). Maggia Gneiss data 
was acquired with the direction of maximum principal 
compression parallel to the gneissic foliation. 
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Figure 3: Variation of the parameters of the Weibull distributions of fragmented Maggia Gneiss (Figure 2) with strain 
rate. The cumulative Weibull distribution function is shown, where 𝜆 and k are the scale and shape parameters respec-
tively, and x is the fragment size. Points are colored by the stress at failure (strength).	

Figure 2: Fragmented Maggia Gneiss and their fragmented size distributions. Points are measured data while lines are 
fitted Weibull distributions, both are colored by the strain rate at failure (Figure 1). 
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